Paper ID: 2404.15784
An Empirical Study of Aegis
Daniel Saragih, Paridhi Goel, Tejas Balaji, Alyssa Li
Bit flipping attacks are one class of attacks on neural networks with numerous defense mechanisms invented to mitigate its potency. Due to the importance of ensuring the robustness of these defense mechanisms, we perform an empirical study on the Aegis framework. We evaluate the baseline mechanisms of Aegis on low-entropy data (MNIST), and we evaluate a pre-trained model with the mechanisms fine-tuned on MNIST. We also compare the use of data augmentation to the robustness training of Aegis, and how Aegis performs under other adversarial attacks, such as the generation of adversarial examples. We find that both the dynamic-exit strategy and robustness training of Aegis has some drawbacks. In particular, we see drops in accuracy when testing on perturbed data, and on adversarial examples, as compared to baselines. Moreover, we found that the dynamic exit-strategy loses its uniformity when tested on simpler datasets. The code for this project is available on GitHub.
Submitted: Apr 24, 2024