Paper ID: 2404.16380

Efficient Higher-order Convolution for Small Kernels in Deep Learning

Zuocheng Wen, Lingzhong Guo

Deep convolutional neural networks (DCNNs) are a class of artificial neural networks, primarily for computer vision tasks such as segmentation and classification. Many nonlinear operations, such as activation functions and pooling strategies, are used in DCNNs to enhance their ability to process different signals with different tasks. Conceptional convolution, a linear filter, is the essential component of DCNNs while nonlinear convolution is generally implemented as higher-order Volterra filters, However, for Volterra filtering, significant memory and computational costs pose a primary limitation for its widespread application in DCNN applications. In this study, we propose a novel method to perform higher-order Volterra filtering with lower memory and computation cost in forward and backward pass in DCNN training. The proposed method demonstrates computational advantages compared with conventional Volterra filter implementation. Furthermore, based on the proposed method, a new attention module called Higher-order Local Attention Block (HLA) is proposed and tested on CIFAR-100 dataset, which shows competitive improvement for classification task. Source code is available at: https://github.com/WinterWen666/Efficient-High-Order-Volterra-Convolution.git

Submitted: Apr 25, 2024