Paper ID: 2404.18276

Bias Neutralization Framework: Measuring Fairness in Large Language Models with Bias Intelligence Quotient (BiQ)

Malur Narayan, John Pasmore, Elton Sampaio, Vijay Raghavan, Gabriella Waters

The burgeoning influence of Large Language Models (LLMs) in shaping public discourse and decision-making underscores the imperative to address inherent biases within these AI systems. In the wake of AI's expansive integration across sectors, addressing racial bias in LLMs has never been more critical. This paper introduces a novel framework called Comprehensive Bias Neutralization Framework (CBNF) which embodies an innovative approach to quantifying and mitigating biases within LLMs. Our framework combines the Large Language Model Bias Index (LLMBI) [Oketunji, A., Anas, M., Saina, D., (2023)] and Bias removaL with No Demographics (BLIND) [Orgad, H., Belinkov, Y. (2023)] methodologies to create a new metric called Bias Intelligence Quotient (BiQ)which detects, measures, and mitigates racial bias in LLMs without reliance on demographic annotations. By introducing a new metric called BiQ that enhances LLMBI with additional fairness metrics, CBNF offers a multi-dimensional metric for bias assessment, underscoring the necessity of a nuanced approach to fairness in AI [Mehrabi et al., 2021]. This paper presents a detailed analysis of Latimer AI (a language model incrementally trained on black history and culture) in comparison to ChatGPT 3.5, illustrating Latimer AI's efficacy in detecting racial, cultural, and gender biases through targeted training and refined bias mitigation strategies [Latimer & Bender, 2023].

Submitted: Apr 28, 2024