Paper ID: 2404.18702

Why You Should Not Trust Interpretations in Machine Learning: Adversarial Attacks on Partial Dependence Plots

Xi Xin, Giles Hooker, Fei Huang

The adoption of artificial intelligence (AI) across industries has led to the widespread use of complex black-box models and interpretation tools for decision making. This paper proposes an adversarial framework to uncover the vulnerability of permutation-based interpretation methods for machine learning tasks, with a particular focus on partial dependence (PD) plots. This adversarial framework modifies the original black box model to manipulate its predictions for instances in the extrapolation domain. As a result, it produces deceptive PD plots that can conceal discriminatory behaviors while preserving most of the original model's predictions. This framework can produce multiple fooled PD plots via a single model. By using real-world datasets including an auto insurance claims dataset and COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) dataset, our results show that it is possible to intentionally hide the discriminatory behavior of a predictor and make the black-box model appear neutral through interpretation tools like PD plots while retaining almost all the predictions of the original black-box model. Managerial insights for regulators and practitioners are provided based on the findings.

Submitted: Apr 29, 2024