Paper ID: 2405.00695
Joint torques prediction of a robotic arm using neural networks
Giulia d'Addato, Ruggero Carli, Eurico Pedrosa, Artur Pereira, Luigi Palopoli, Daniele Fontanelli
Accurate dynamic models are crucial for many robotic applications. Traditional approaches to deriving these models are based on the application of Lagrangian or Newtonian mechanics. Although these methods provide a good insight into the physical behaviour of the system, they rely on the exact knowledge of parameters such as inertia, friction and joint flexibility. In addition, the system is often affected by uncertain and nonlinear effects, such as saturation and dead zones, which can be difficult to model. A popular alternative is the application of Machine Learning (ML) techniques - e.g., Neural Networks (NNs) - in the context of a "black-box" methodology. This paper reports on our experience with this approach for a real-life 6 degrees of freedom (DoF) manipulator. Specifically, we considered several NN architectures: single NN, multiple NNs, and cascade NN. We compared the performance of the system by using different policies for selecting the NN hyperparameters. Our experiments reveal that the best accuracy and performance are obtained by a cascade NN, in which we encode our prior physical knowledge about the dependencies between joints, complemented by an appropriate optimisation of the hyperparameters.
Submitted: Mar 28, 2024