Paper ID: 2405.00698
CUDA-Accelerated Soft Robot Neural Evolution with Large Language Model Supervision
Lechen Zhang
This paper addresses the challenge of co-designing morphology and control in soft robots via a novel neural network evolution approach. We propose an innovative method to implicitly dual-encode soft robots, thus facilitating the simultaneous design of morphology and control. Additionally, we introduce the large language model to serve as the control center during the evolutionary process. This advancement considerably optimizes the evolution speed compared to traditional soft-bodied robot co-design methods. Further complementing our work is the implementation of Gaussian positional encoding - an approach that augments the neural network's comprehension of robot morphology. Our paper offers a new perspective on soft robot design, illustrating substantial improvements in efficiency and comprehension during the design and evolutionary process.
Submitted: Apr 12, 2024