Paper ID: 2405.01558

Configurable Learned Holography

Yicheng Zhan, Liang Shi, Wojciech Matusik, Qi Sun, Kaan Akşit

In the pursuit of advancing holographic display technology, we face a unique yet persistent roadblock: the inflexibility of learned holography in adapting to various hardware configurations. This is due to the variances in the complex optical components and system settings in existing holographic displays. Although the emerging learned approaches have enabled rapid and high-quality hologram generation, any alteration in display hardware still requires a retraining of the model. Our work introduces a configurable learned model that interactively computes 3D holograms from RGB-only 2D images for a variety of holographic displays. The model can be conditioned to predefined hardware parameters of existing holographic displays such as working wavelengths, pixel pitch, propagation distance, and peak brightness without having to retrain. In addition, our model accommodates various hologram types, including conventional single-color and emerging multi-color holograms that simultaneously use multiple color primaries in holographic displays. Notably, we enabled our hologram computations to rely on identifying the correlation between depth estimation and 3D hologram synthesis tasks within the learning domain for the first time in the literature. We employ knowledge distillation via a student-teacher learning strategy to streamline our model for interactive performance. Achieving up to a 2x speed improvement compared to state-of-the-art models while consistently generating high-quality 3D holograms with different hardware configurations.

Submitted: Mar 24, 2024