Paper ID: 2405.02371
Architecture of a Cortex Inspired Hierarchical Event Recaller
Valentin Puente Varona
This paper proposes a new approach to Machine Learning (ML) that focuses on unsupervised continuous context-dependent learning of complex patterns. Although the proposal is partly inspired by some of the current knowledge about the structural and functional properties of the mammalian brain, we do not claim that biological systems work in an analogous way (nor the opposite). Based on some properties of the cerebellar cortex and adjacent structures, a proposal suitable for practical problems is presented. A synthetic structure capable of identifying and predicting complex temporal series will be defined and experimentally tested. The system relies heavily on prediction to help identify and learn patterns based on previously acquired contextual knowledge. As a proof of concept, the proposed system is shown to be able to learn, identify and predict a remarkably complex temporal series such as human speech, with no prior knowledge. From raw data, without any adaptation in the core algorithm, the system is able to identify certain speech structures from a set of Spanish sentences. Unlike conventional ML, the proposal can learn with a reduced training set. Although the idea can be applied to a constrained problem, such as the detection of unknown vocabulary in a speech, it could be used in more applications, such as vision, or (by incorporating the missing biological periphery) fit into other ML techniques. Given the trivial computational primitives used, a potential hardware implementation will be remarkably frugal. Coincidentally, the proposed model not only conforms to a plausible functional framework for biological systems but may also explain many elusive cognitive phenomena.
Submitted: May 3, 2024