Paper ID: 2405.03620

Detecting Android Malware: From Neural Embeddings to Hands-On Validation with BERTroid

Meryam Chaieb, Mostafa Anouar Ghorab, Mohamed Aymen Saied

As cyber threats and malware attacks increasingly alarm both individuals and businesses, the urgency for proactive malware countermeasures intensifies. This has driven a rising interest in automated machine learning solutions. Transformers, a cutting-edge category of attention-based deep learning methods, have demonstrated remarkable success. In this paper, we present BERTroid, an innovative malware detection model built on the BERT architecture. Overall, BERTroid emerged as a promising solution for combating Android malware. Its ability to outperform state-of-the-art solutions demonstrates its potential as a proactive defense mechanism against malicious software attacks. Additionally, we evaluate BERTroid on multiple datasets to assess its performance across diverse scenarios. In the dynamic landscape of cybersecurity, our approach has demonstrated promising resilience against the rapid evolution of malware on Android systems. While the machine learning model captures broad patterns, we emphasize the role of manual validation for deeper comprehension and insight into these behaviors. This human intervention is critical for discerning intricate and context-specific behaviors, thereby validating and reinforcing the model's findings.

Submitted: May 6, 2024