Paper ID: 2405.03706

Improving Graph Machine Learning Performance Through Feature Augmentation Based on Network Control Theory

Anwar Said, Obaid Ullah Ahmad, Waseem Abbas, Mudassir Shabbir, Xenofon Koutsoukos

Network control theory (NCT) offers a robust analytical framework for understanding the influence of network topology on dynamic behaviors, enabling researchers to decipher how certain patterns of external control measures can steer system dynamics towards desired states. Distinguished from other structure-function methodologies, NCT's predictive capabilities can be coupled with deploying Graph Neural Networks (GNNs), which have demonstrated exceptional utility in various network-based learning tasks. However, the performance of GNNs heavily relies on the expressiveness of node features, and the lack of node features can greatly degrade their performance. Furthermore, many real-world systems may lack node-level information, posing a challenge for GNNs.To tackle this challenge, we introduce a novel approach, NCT-based Enhanced Feature Augmentation (NCT-EFA), that assimilates average controllability, along with other centrality indices, into the feature augmentation pipeline to enhance GNNs performance. Our evaluation of NCT-EFA, on six benchmark GNN models across two experimental setting. solely employing average controllability and in combination with additional centrality metrics. showcases an improved performance reaching as high as 11%. Our results demonstrate that incorporating NCT into feature enrichment can substantively extend the applicability and heighten the performance of GNNs in scenarios where node-level information is unavailable.

Submitted: May 3, 2024