Paper ID: 2405.03913
Digital Twin Calibration for Biological System-of-Systems: Cell Culture Manufacturing Process
Fuqiang Cheng, Wei Xie, Hua Zheng
Biomanufacturing innovation relies on an efficient Design of Experiments (DoEs) to optimize processes and product quality. Traditional DoE methods, ignoring the underlying bioprocessing mechanisms, often suffer from a lack of interpretability and sample efficiency. This limitation motivates us to create a new optimal learning approach for digital twin model calibration. In this study, we consider the cell culture process multi-scale mechanistic model, also known as Biological System-of-Systems (Bio-SoS). This model with a modular design, composed of sub-models, allows us to integrate data across various production processes. To calibrate the Bio-SoS digital twin, we evaluate the mean squared error of model prediction and develop a computational approach to quantify the impact of parameter estimation error of individual sub-models on the prediction accuracy of digital twin, which can guide sample-efficient and interpretable DoEs.
Submitted: May 7, 2024