Paper ID: 2405.04311

Cross-IQA: Unsupervised Learning for Image Quality Assessment

Zhen Zhang

Automatic perception of image quality is a challenging problem that impacts billions of Internet and social media users daily. To advance research in this field, we propose a no-reference image quality assessment (NR-IQA) method termed Cross-IQA based on vision transformer(ViT) model. The proposed Cross-IQA method can learn image quality features from unlabeled image data. We construct the pretext task of synthesized image reconstruction to unsupervised extract the image quality information based ViT block. The pretrained encoder of Cross-IQA is used to fine-tune a linear regression model for score prediction. Experimental results show that Cross-IQA can achieve state-of-the-art performance in assessing the low-frequency degradation information (e.g., color change, blurring, etc.) of images compared with the classical full-reference IQA and NR-IQA under the same datasets.

Submitted: May 7, 2024