Paper ID: 2405.06586

Enhancing Weakly Supervised Semantic Segmentation with Multi-modal Foundation Models: An End-to-End Approach

Elham Ravanbakhsh, Cheng Niu, Yongqing Liang, J. Ramanujam, Xin Li

Semantic segmentation is a core computer vision problem, but the high costs of data annotation have hindered its wide application. Weakly-Supervised Semantic Segmentation (WSSS) offers a cost-efficient workaround to extensive labeling in comparison to fully-supervised methods by using partial or incomplete labels. Existing WSSS methods have difficulties in learning the boundaries of objects leading to poor segmentation results. We propose a novel and effective framework that addresses these issues by leveraging visual foundation models inside the bounding box. Adopting a two-stage WSSS framework, our proposed network consists of a pseudo-label generation module and a segmentation module. The first stage leverages Segment Anything Model (SAM) to generate high-quality pseudo-labels. To alleviate the problem of delineating precise boundaries, we adopt SAM inside the bounding box with the help of another pre-trained foundation model (e.g., Grounding-DINO). Furthermore, we eliminate the necessity of using the supervision of image labels, by employing CLIP in classification. Then in the second stage, the generated high-quality pseudo-labels are used to train an off-the-shelf segmenter that achieves the state-of-the-art performance on PASCAL VOC 2012 and MS COCO 2014.

Submitted: May 10, 2024