Paper ID: 2405.06789
Self-Consistent Recursive Diffusion Bridge for Medical Image Translation
Fuat Arslan, Bilal Kabas, Onat Dalmaz, Muzaffer Ozbey, Tolga Çukur
Denoising diffusion models (DDM) have gained recent traction in medical image translation given improved training stability over adversarial models. DDMs learn a multi-step denoising transformation to progressively map random Gaussian-noise images onto target-modality images, while receiving stationary guidance from source-modality images. As this denoising transformation diverges significantly from the task-relevant source-to-target transformation, DDMs can suffer from weak source-modality guidance. Here, we propose a novel self-consistent recursive diffusion bridge (SelfRDB) for improved performance in medical image translation. Unlike DDMs, SelfRDB employs a novel forward process with start- and end-points defined based on target and source images, respectively. Intermediate image samples across the process are expressed via a normal distribution with mean taken as a convex combination of start-end points, and variance from additive noise. Unlike regular diffusion bridges that prescribe zero variance at start-end points and high variance at mid-point of the process, we propose a novel noise scheduling with monotonically increasing variance towards the end-point in order to boost generalization performance and facilitate information transfer between the two modalities. To further enhance sampling accuracy in each reverse step, we propose a novel sampling procedure where the network recursively generates a transient-estimate of the target image until convergence onto a self-consistent solution. Comprehensive analyses in multi-contrast MRI and MRI-CT translation indicate that SelfRDB offers superior performance against competing methods.
Submitted: May 10, 2024