Paper ID: 2405.06914

Non-confusing Generation of Customized Concepts in Diffusion Models

Wang Lin, Jingyuan Chen, Jiaxin Shi, Yichen Zhu, Chen Liang, Junzhong Miao, Tao Jin, Zhou Zhao, Fei Wu, Shuicheng Yan, Hanwang Zhang

We tackle the common challenge of inter-concept visual confusion in compositional concept generation using text-guided diffusion models (TGDMs). It becomes even more pronounced in the generation of customized concepts, due to the scarcity of user-provided concept visual examples. By revisiting the two major stages leading to the success of TGDMs -- 1) contrastive image-language pre-training (CLIP) for text encoder that encodes visual semantics, and 2) training TGDM that decodes the textual embeddings into pixels -- we point that existing customized generation methods only focus on fine-tuning the second stage while overlooking the first one. To this end, we propose a simple yet effective solution called CLIF: contrastive image-language fine-tuning. Specifically, given a few samples of customized concepts, we obtain non-confusing textual embeddings of a concept by fine-tuning CLIP via contrasting a concept and the over-segmented visual regions of other concepts. Experimental results demonstrate the effectiveness of CLIF in preventing the confusion of multi-customized concept generation.

Submitted: May 11, 2024