Paper ID: 2405.08282
Automatic Segmentation of the Kidneys and Cystic Renal Lesions on Non-Contrast CT Using a Convolutional Neural Network
Lucas Aronson, Ruben Ngnitewe Massaa, Syed Jamal Safdar Gardezi, Andrew L. Wentland
Objective: Automated segmentation tools are useful for calculating kidney volumes rapidly and accurately. Furthermore, these tools have the power to facilitate large-scale image-based artificial intelligence projects by generating input labels, such as for image registration algorithms. Prior automated segmentation models have largely ignored non-contrast computed tomography (CT) imaging. This work aims to implement and train a deep learning (DL) model to segment the kidneys and cystic renal lesions (CRLs) from non-contrast CT scans. Methods: Manual segmentation of the kidneys and CRLs was performed on 150 non-contrast abdominal CT scans. The data were divided into an 80/20 train/test split and a deep learning (DL) model was trained to segment the kidneys and CRLs. Various scoring metrics were used to assess model performance, including the Dice Similarity Coefficient (DSC), Jaccard Index (JI), and absolute and percent error kidney volume and lesion volume. Bland-Altman (B-A) analysis was performed to compare manual versus DL-based kidney volumes. Results: The DL model achieved a median kidney DSC of 0.934, median CRL DSC of 0.711, and total median study DSC of 0.823. Average volume errors were 0.9% for renal parenchyma, 37.0% for CRLs, and 2.2% overall. B-A analysis demonstrated that DL-based volumes tended to be greater than manual volumes, with a mean bias of +3.0 ml (+/- 2 SD of +/- 50.2 ml). Conclusion: A deep learning model trained to segment kidneys and cystic renal lesions on non-contrast CT examinations was able to provide highly accurate segmentations, with a median kidney Dice Similarity Coefficient of 0.934. Keywords: deep learning; kidney segmentation; artificial intelligence; convolutional neural networks.
Submitted: May 14, 2024