Paper ID: 2405.08604

Towards Geometry-Aware Pareto Set Learning for Neural Multi-Objective Combinatorial Optimization

Yongfan Lu, Zixiang Di, Bingdong Li, Shengcai Liu, Hong Qian, Peng Yang, Ke Tang, Aimin Zhou

Multi-objective combinatorial optimization (MOCO) problems are prevalent in various real-world applications. Most existing neural MOCO methods rely on problem decomposition to transform an MOCO problem into a series of singe-objective combinatorial optimization (SOCO) problems. However, these methods often approximate partial regions of the Pareto front and spend excessive time on diversity enhancement because of ambiguous decomposition and time-consuming precise hypervolume calculation. To address these limitations, we design a Geometry-Aware Pareto set Learning algorithm named GAPL, which provides a novel geometric perspective for neural MOCO via a Pareto attention model based on hypervolume expectation maximization. In addition, we propose a hypervolume residual update strategy to enable the Pareto attention model to capture both local and non-local information of the Pareto set/front. We also design a novel inference approach to further improve quality of the solution set and speed up hypervolume calculation. Experimental results on three classic MOCO problems demonstrate that our GAPL outperforms several state-of-the-art baselines via superior decomposition and efficient diversity enhancement.

Submitted: May 14, 2024