Paper ID: 2405.09453
Kuramoto Oscillators and Swarms on Manifolds for Geometry Informed Machine Learning
Vladimir Jacimovic
We propose the idea of using Kuramoto models (including their higher-dimensional generalizations) for machine learning over non-Euclidean data sets. These models are systems of matrix ODE's describing collective motions (swarming dynamics) of abstract particles (generalized oscillators) on spheres, homogeneous spaces and Lie groups. Such models have been extensively studied from the beginning of XXI century both in statistical physics and control theory. They provide a suitable framework for encoding maps between various manifolds and are capable of learning over spherical and hyperbolic geometries. In addition, they can learn coupled actions of transformation groups (such as special orthogonal, unitary and Lorentz groups). Furthermore, we overview families of probability distributions that provide appropriate statistical models for probabilistic modeling and inference in Geometric Deep Learning. We argue in favor of using statistical models which arise in different Kuramoto models in the continuum limit of particles. The most convenient families of probability distributions are those which are invariant with respect to actions of certain symmetry groups.
Submitted: May 15, 2024