Paper ID: 2405.09716

Illumination Histogram Consistency Metric for Quantitative Assessment of Video Sequences

Long Chen, Mobarakol Islam, Matt Clarkson, Thomas Dowrick

The advances in deep generative models have greatly accelerate the process of video procession such as video enhancement and synthesis. Learning spatio-temporal video models requires to capture the temporal dynamics of a scene, in addition to the visual appearance of individual frames. Illumination consistency, which reflects the variations of illumination in the dynamic video sequences, play a vital role in video processing. Unfortunately, to date, no well-accepted quantitative metric has been proposed for video illumination consistency evaluation. In this paper, we propose a illumination histogram consistency (IHC) metric to quantitatively and automatically evaluate the illumination consistency of the video sequences. IHC measures the illumination variation of any video sequence based on the illumination histogram discrepancies across all the frames in the video sequence. Specifically, given a video sequence, we first estimate the illumination map of each individual frame using the Retinex model; Then, using the illumination maps, the mean illumination histogram of the video sequence is computed by the mean operation across all the frames; Next, we compute the illumination histogram discrepancy between each individual frame and the mean illumination histogram and sum up all the illumination histogram discrepancies to represent the illumination variations of the video sequence. Finally, we obtain the IHC score from the illumination histogram discrepancies via normalization and subtraction operations. Experiments are conducted to illustrate the performance of the proposed IHC metric and its capability to measure the illumination variations in video sequences. The source code is available on \url{https://github.com/LongChenCV/IHC-Metric}.

Submitted: May 15, 2024