Paper ID: 2405.09777

Rethinking Barely-Supervised Volumetric Medical Image Segmentation from an Unsupervised Domain Adaptation Perspective

Zhiqiang Shen, Peng Cao, Junming Su, Jinzhu Yang, Osmar R. Zaiane

This paper investigates an extremely challenging problem: barely-supervised volumetric medical image segmentation (BSS). A BSS training dataset consists of two parts: 1) a barely-annotated labeled set, where each labeled image contains only a single-slice annotation, and 2) an unlabeled set comprising numerous unlabeled volumetric images. State-of-the-art BSS methods employ a registration-based paradigm, which uses inter-slice image registration to propagate single-slice annotations into volumetric pseudo labels, constructing a completely annotated labeled set, to which a semi-supervised segmentation scheme can be applied. However, the paradigm has a critical limitation: the pseudo-labels generated by image registration are unreliable and noisy. Motivated by this, we propose a new perspective: instead of solving BSS within a semi-supervised learning scheme, this work formulates BSS as an unsupervised domain adaptation problem. To this end, we propose a novel BSS framework, \textbf{B}arely-supervised learning \textbf{via} unsupervised domain \textbf{A}daptation (BvA), as an alternative to the dominant registration paradigm. Specifically, we first design a novel noise-free labeled data construction algorithm (NFC) for slice-to-volume labeled data synthesis. Then, we introduce a frequency and spatial Mix-Up strategy (FSX) to mitigate the domain shifts. Extensive experiments demonstrate that our method provides a promising alternative for BSS. Remarkably, the proposed method, trained on the left atrial segmentation dataset with \textbf{only one} barely-labeled image, achieves a Dice score of 81.20%, outperforming the state-of-the-art by 61.71%. The code is available at this https URL.

Submitted: May 16, 2024