Paper ID: 2405.10608
ECATS: Explainable-by-design concept-based anomaly detection for time series
Irene Ferfoglia, Gaia Saveri, Laura Nenzi, Luca Bortolussi
Deep learning methods for time series have already reached excellent performances in both prediction and classification tasks, including anomaly detection. However, the complexity inherent in Cyber Physical Systems (CPS) creates a challenge when it comes to explainability methods. To overcome this inherent lack of interpretability, we propose ECATS, a concept-based neuro-symbolic architecture where concepts are represented as Signal Temporal Logic (STL) formulae. Leveraging kernel-based methods for STL, concept embeddings are learnt in an unsupervised manner through a cross-attention mechanism. The network makes class predictions through these concept embeddings, allowing for a meaningful explanation to be naturally extracted for each input. Our preliminary experiments with a simple CPS-based dataset show that our model is able to achieve great classification performance while ensuring local interpretability.
Submitted: May 17, 2024