Paper ID: 2405.11432
On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks
Nicholas H. Barbara, Ruigang Wang, Ian R. Manchester
This paper presents a study of robust policy networks in deep reinforcement learning. We investigate the benefits of policy parameterizations that naturally satisfy constraints on their Lipschitz bound, analyzing their empirical performance and robustness on two representative problems: pendulum swing-up and Atari Pong. We illustrate that policy networks with smaller Lipschitz bounds are more robust to disturbances, random noise, and targeted adversarial attacks than unconstrained policies composed of vanilla multi-layer perceptrons or convolutional neural networks. However, the structure of the Lipschitz layer is important. We find that the widely-used method of spectral normalization is too conservative and severely impacts clean performance, whereas more expressive Lipschitz layers such as the recently-proposed Sandwich layer can achieve improved robustness without sacrificing clean performance.
Submitted: May 19, 2024