Paper ID: 2405.11437
The First Swahili Language Scene Text Detection and Recognition Dataset
Fadila Wendigoundi Douamba, Jianjun Song, Ling Fu, Yuliang Liu, Xiang Bai
Scene text recognition is essential in many applications, including automated translation, information retrieval, driving assistance, and enhancing accessibility for individuals with visual impairments. Much research has been done to improve the accuracy and performance of scene text detection and recognition models. However, most of this research has been conducted in the most common languages, English and Chinese. There is a significant gap in low-resource languages, especially the Swahili Language. Swahili is widely spoken in East African countries but is still an under-explored language in scene text recognition. No studies have been focused explicitly on Swahili natural scene text detection and recognition, and no dataset for Swahili language scene text detection and recognition is publicly available. We propose a comprehensive dataset of Swahili scene text images and evaluate the dataset on different scene text detection and recognition models. The dataset contains 976 images collected in different places and under various circumstances. Each image has its annotation at the word level. The proposed dataset can also serve as a benchmark dataset specific to the Swahili language for evaluating and comparing different approaches and fostering future research endeavors. The dataset is available on GitHub via this link: https://github.com/FadilaW/Swahili-STR-Dataset
Submitted: May 19, 2024