Paper ID: 2405.11616
Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention
Peng Li, Yuan Liu, Xiaoxiao Long, Feihu Zhang, Cheng Lin, Mengfei Li, Xingqun Qi, Shanghang Zhang, Wenhan Luo, Ping Tan, Wenping Wang, Qifeng Liu, Yike Guo
In this paper, we introduce Era3D, a novel multiview diffusion method that generates high-resolution multiview images from a single-view image. Despite significant advancements in multiview generation, existing methods still suffer from camera prior mismatch, inefficacy, and low resolution, resulting in poor-quality multiview images. Specifically, these methods assume that the input images should comply with a predefined camera type, e.g. a perspective camera with a fixed focal length, leading to distorted shapes when the assumption fails. Moreover, the full-image or dense multiview attention they employ leads to an exponential explosion of computational complexity as image resolution increases, resulting in prohibitively expensive training costs. To bridge the gap between assumption and reality, Era3D first proposes a diffusion-based camera prediction module to estimate the focal length and elevation of the input image, which allows our method to generate images without shape distortions. Furthermore, a simple but efficient attention layer, named row-wise attention, is used to enforce epipolar priors in the multiview diffusion, facilitating efficient cross-view information fusion. Consequently, compared with state-of-the-art methods, Era3D generates high-quality multiview images with up to a 512*512 resolution while reducing computation complexity by 12x times. Comprehensive experiments demonstrate that Era3D can reconstruct high-quality and detailed 3D meshes from diverse single-view input images, significantly outperforming baseline multiview diffusion methods. Project page: https://penghtyx.github.io/Era3D/.
Submitted: May 19, 2024