Paper ID: 2405.12724
RemoCap: Disentangled Representation Learning for Motion Capture
Hongsheng Wang, Lizao Zhang, Zhangnan Zhong, Shuolin Xu, Xinrui Zhou, Shengyu Zhang, Huahao Xu, Fei Wu, Feng Lin
Reconstructing 3D human bodies from realistic motion sequences remains a challenge due to pervasive and complex occlusions. Current methods struggle to capture the dynamics of occluded body parts, leading to model penetration and distorted motion. RemoCap leverages Spatial Disentanglement (SD) and Motion Disentanglement (MD) to overcome these limitations. SD addresses occlusion interference between the target human body and surrounding objects. It achieves this by disentangling target features along the dimension axis. By aligning features based on their spatial positions in each dimension, SD isolates the target object's response within a global window, enabling accurate capture despite occlusions. The MD module employs a channel-wise temporal shuffling strategy to simulate diverse scene dynamics. This process effectively disentangles motion features, allowing RemoCap to reconstruct occluded parts with greater fidelity. Furthermore, this paper introduces a sequence velocity loss that promotes temporal coherence. This loss constrains inter-frame velocity errors, ensuring the predicted motion exhibits realistic consistency. Extensive comparisons with state-of-the-art (SOTA) methods on benchmark datasets demonstrate RemoCap's superior performance in 3D human body reconstruction. On the 3DPW dataset, RemoCap surpasses all competitors, achieving the best results in MPVPE (81.9), MPJPE (72.7), and PA-MPJPE (44.1) metrics. Codes are available at https://wanghongsheng01.github.io/RemoCap/.
Submitted: May 21, 2024