Paper ID: 2405.12983
Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer
Maxime Burchi, Krishna C. Puvvada, Jagadeesh Balam, Boris Ginsburg, Radu Timofte
Humans are adept at leveraging visual cues from lip movements for recognizing speech in adverse listening conditions. Audio-Visual Speech Recognition (AVSR) models follow similar approach to achieve robust speech recognition in noisy conditions. In this work, we present a multilingual AVSR model incorporating several enhancements to improve performance and audio noise robustness. Notably, we adapt the recently proposed Fast Conformer model to process both audio and visual modalities using a novel hybrid CTC/RNN-T architecture. We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets (VoxCeleb2 and AVSpeech). Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%. On the recently introduced MuAViC benchmark, our model yields an absolute average-WER reduction of 11.9% in comparison to the original baseline. Finally, we demonstrate the ability of the proposed model to perform audio-only, visual-only, and audio-visual speech recognition at test time.
Submitted: Mar 14, 2024