Paper ID: 2405.13937

DyGPrompt: Learning Feature and Time Prompts on Dynamic Graphs

Xingtong Yu, Zhenghao Liu, Yuan Fang, Xinming Zhang

Dynamic graphs are pervasive in the real world, modeling dynamic relations between objects across various fields. For dynamic graph modeling, dynamic graph neural networks (DGNNs) have emerged as a mainstream technique, which are generally pre-trained on the link prediction task, leaving a significant gap from the objectives of downstream tasks such as node classification. To bridge the gap, prompt-based learning has gained traction on graphs. However, existing efforts focus on static graphs, neglecting the evolution of dynamic graphs. In this paper, we propose DyGPrompt, a novel pre-training and prompting framework for dynamic graph modeling. First, we design dual prompts to address the gap in both task objectives and dynamic variations across pre-training and downstream tasks. Second, we recognize that node and time features mutually characterize each other, and propose dual condition-nets to model the evolving node-time patterns in downstream tasks. Finally, we thoroughly evaluate and analyze DyGPrompt through extensive experiments on three public datasets.

Submitted: May 22, 2024