Paper ID: 2405.14024
Two Heads are Better Than One: Neural Networks Quantization with 2D Hilbert Curve-based Output Representation
Mykhailo Uss, Ruslan Yermolenko, Olena Kolodiazhna, Oleksii Shashko, Ivan Safonov, Volodymyr Savin, Yoonjae Yeo, Seowon Ji, Jaeyun Jeong
Quantization is widely used to increase deep neural networks' (DNN) memory, computation, and power efficiency. Various techniques, such as post-training quantization and quantization-aware training, have been proposed to improve quantization quality. We introduce a novel approach for DNN quantization that uses a redundant representation of DNN's output. We represent the target quantity as a point on a 2D parametric curve. The DNN model is modified to predict 2D points that are mapped back to the target quantity at a post-processing stage. We demonstrate that this mapping can reduce quantization error. For the low-order parametric Hilbert curve, Depth-From-Stereo task, and two models represented by U-Net architecture and vision transformer, we achieved a quantization error reduction by about 5 times for the INT8 model at both CPU and DSP delegates. This gain comes with a minimal inference time increase (less than 7%). Our approach can be applied to other tasks, including segmentation, object detection, and key-points prediction.
Submitted: May 22, 2024