Paper ID: 2405.14736
GIFT: Unlocking Full Potential of Labels in Distilled Dataset at Near-zero Cost
Xinyi Shang, Peng Sun, Tao Lin
Recent advancements in dataset distillation have demonstrated the significant benefits of employing soft labels generated by pre-trained teacher models. In this paper, we introduce a novel perspective by emphasizing the full utilization of labels. We first conduct a comprehensive comparison of various loss functions for soft label utilization in dataset distillation, revealing that the model trained on the synthetic dataset exhibits high sensitivity to the choice of loss function for soft label utilization. This finding highlights the necessity of a universal loss function for training models on synthetic datasets. Building on these insights, we introduce an extremely simple yet surprisingly effective plug-and-play approach, GIFT, which encompasses soft label refinement and a cosine similarity-based loss function to efficiently leverage full label information. Extensive experiments demonstrate that GIFT consistently enhances the state-of-the-art dataset distillation methods across various scales datasets without incurring additional computational costs. For instance, on ImageNet-1K with IPC = 10, GIFT improves the SOTA method RDED by 3.9% and 1.8% on ConvNet and ResNet-18, respectively. Code: https://github.com/LINs-lab/GIFT.
Submitted: May 23, 2024