Paper ID: 2405.14822

PaGoDA: Progressive Growing of a One-Step Generator from a Low-Resolution Diffusion Teacher

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, Stefano Ermon

The diffusion model performs remarkable in generating high-dimensional content but is computationally intensive, especially during training. We propose Progressive Growing of Diffusion Autoencoder (PaGoDA), a novel pipeline that reduces the training costs through three stages: training diffusion on downsampled data, distilling the pretrained diffusion, and progressive super-resolution. With the proposed pipeline, PaGoDA achieves a $64\times$ reduced cost in training its diffusion model on 8x downsampled data; while at the inference, with the single-step, it performs state-of-the-art on ImageNet across all resolutions from 64x64 to 512x512, and text-to-image. PaGoDA's pipeline can be applied directly in the latent space, adding compression alongside the pre-trained autoencoder in Latent Diffusion Models (e.g., Stable Diffusion). The code is available at this https URL

Submitted: May 23, 2024