Paper ID: 2405.15312
Resource-Efficient Heartbeat Classification Using Multi-Feature Fusion and Bidirectional LSTM
Reza Nikandish, Jiayu He, Benyamin Haghi
In this article, we present a resource-efficient approach for electrocardiogram (ECG) based heartbeat classification using multi-feature fusion and bidirectional long short-term memory (Bi-LSTM). The dataset comprises five original classes from the MIT-BIH Arrhythmia Database: Normal (N), Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Premature Ventricular Contraction (PVC), and Paced Beat (PB). Preprocessing methods including the discrete wavelet transform and dual moving average windows are used to reduce noise and artifacts in the raw ECG signal, and extract the main points (PQRST) of the ECG waveform. Multi-feature fusion is achieved by utilizing time intervals and the proposed under-the-curve areas, which are inherently robust against noise, as input features. Simulations demonstrated that incorporating under-the-curve area features improved the classification accuracy for the challenging RBBB and LBBB classes from 31.4\% to 84.3\% for RBBB, and from 69.6\% to 87.0\% for LBBB. Using a Bi-LSTM network, rather than a conventional LSTM network, resulted in higher accuracy (33.8\% vs 21.8\%) with a 28\% reduction in required network parameters for the RBBB class. Multiple neural network models with varying parameter sizes, including tiny (84k), small (150k), medium (478k), and large (1.25M) models, are developed to achieve high accuracy \textit{across all classes}, a more crucial and challenging goal than overall classification accuracy.
Submitted: May 24, 2024