Paper ID: 2405.16233

Client2Vec: Improving Federated Learning by Distribution Shifts Aware Client Indexing

Yongxin Guo, Lin Wang, Xiaoying Tang, Tao Lin

Federated Learning (FL) is a privacy-preserving distributed machine learning paradigm. Nonetheless, the substantial distribution shifts among clients pose a considerable challenge to the performance of current FL algorithms. To mitigate this challenge, various methods have been proposed to enhance the FL training process. This paper endeavors to tackle the issue of data heterogeneity from another perspective -- by improving FL algorithms prior to the actual training stage. Specifically, we introduce the Client2Vec mechanism, which generates a unique client index for each client before the commencement of FL training. Subsequently, we leverage the generated client index to enhance the subsequent FL training process. To demonstrate the effectiveness of the proposed Client2Vec method, we conduct three case studies that assess the impact of the client index on the FL training process. These case studies encompass enhanced client sampling, model aggregation, and local training. Extensive experiments conducted on diverse datasets and model architectures show the efficacy of Client2Vec across all three case studies. Our code is avaliable at \url{https://github.com/LINs-lab/client2vec}.

Submitted: May 25, 2024