Paper ID: 2405.16450
Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search
Max Liu, Chan-Hung Yu, Wei-Hsu Lee, Cheng-Wei Hung, Yen-Chun Chen, Shao-Hua Sun
Programmatic reinforcement learning (PRL) has been explored for representing policies through programs as a means to achieve interpretability and generalization. Despite promising outcomes, current state-of-the-art PRL methods are hindered by sample inefficiency, necessitating tens of millions of program-environment interactions. To tackle this challenge, we introduce a novel LLM-guided search framework (LLM-GS). Our key insight is to leverage the programming expertise and common sense reasoning of LLMs to enhance the efficiency of assumption-free, random-guessing search methods. We address the challenge of LLMs' inability to generate precise and grammatically correct programs in domain-specific languages (DSLs) by proposing a Pythonic-DSL strategy - an LLM is instructed to initially generate Python codes and then convert them into DSL programs. To further optimize the LLM-generated programs, we develop a search algorithm named Scheduled Hill Climbing, designed to efficiently explore the programmatic search space to improve the programs consistently. Experimental results in the Karel domain demonstrate our LLM-GS framework's superior effectiveness and efficiency. Extensive ablation studies further verify the critical role of our Pythonic-DSL strategy and Scheduled Hill Climbing algorithm. Moreover, we conduct experiments with two novel tasks, showing that LLM-GS enables users without programming skills and knowledge of the domain or DSL to describe the tasks in natural language to obtain performant programs.
Submitted: May 26, 2024