Paper ID: 2405.16772

Balancing User Preferences by Social Networks: A Condition-Guided Social Recommendation Model for Mitigating Popularity Bias

Xin He, Wenqi Fan, Ruobing Wang, Yili Wang, Ying Wang, Shirui Pan, Xin Wang

Social recommendation models weave social interactions into their design to provide uniquely personalized recommendation results for users. However, social networks not only amplify the popularity bias in recommendation models, resulting in more frequent recommendation of hot items and fewer long-tail items, but also include a substantial amount of redundant information that is essentially meaningless for the model's performance. Existing social recommendation models fail to address the issues of popularity bias and the redundancy of social information, as they directly characterize social influence across the entire social network without making targeted adjustments. In this paper, we propose a Condition-Guided Social Recommendation Model (named CGSoRec) to mitigate the model's popularity bias by denoising the social network and adjusting the weights of user's social preferences. More specifically, CGSoRec first includes a Condition-Guided Social Denoising Model (CSD) to remove redundant social relations in the social network for capturing users' social preferences with items more precisely. Then, CGSoRec calculates users' social preferences based on denoised social network and adjusts the weights in users' social preferences to make them can counteract the popularity bias present in the recommendation model. At last, CGSoRec includes a Condition-Guided Diffusion Recommendation Model (CGD) to introduce the adjusted social preferences as conditions to control the recommendation results for a debiased direction. Comprehensive experiments on three real-world datasets demonstrate the effectiveness of our proposed method. The code is in: https://github.com/hexin5515/CGSoRec.

Submitted: May 27, 2024