Paper ID: 2405.17465
Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues
Aashu, Kanchan Rajwar, Millie Pant, Kusum Deep
Food production is a vital global concern and the potential for an agritech revolution through artificial intelligence (AI) remains largely unexplored. This paper presents a comprehensive review focused on the application of machine learning (ML) in agriculture, aiming to explore its transformative potential in farming practices and efficiency enhancement. To understand the extent of research activity in this field, statistical data have been gathered, revealing a substantial growth trend in recent years. This indicates that it stands out as one of the most dynamic and vibrant research domains. By introducing the concept of ML and delving into the realm of smart agriculture, including Precision Agriculture, Smart Farming, Digital Agriculture, and Agriculture 4.0, we investigate how AI can optimize crop output and minimize environmental impact. We highlight the capacity of ML to analyze and classify agricultural data, providing examples of improved productivity and profitability on farms. Furthermore, we discuss prominent ML models and their unique features that have shown promising results in agricultural applications. Through a systematic review of the literature, this paper addresses the existing literature gap on AI in agriculture and offers valuable information to newcomers and researchers. By shedding light on unexplored areas within this emerging field, our objective is to facilitate a deeper understanding of the significant contributions and potential of AI in agriculture, ultimately benefiting the research community.
Submitted: May 23, 2024