Paper ID: 2405.17924

Generative AI Enhances Team Performance and Reduces Need for Traditional Teams

Ning Li, Huaikang Zhou, Kris Mikel-Hong

Recent advancements in generative artificial intelligence (AI) have transformed collaborative work processes, yet the impact on team performance remains underexplored. Here we examine the role of generative AI in enhancing or replacing traditional team dynamics using a randomized controlled experiment with 435 participants across 122 teams. We show that teams augmented with generative AI significantly outperformed those relying solely on human collaboration across various performance measures. Interestingly, teams with multiple AIs did not exhibit further gains, indicating diminishing returns with increased AI integration. Our analysis suggests that centralized AI usage by a few team members is more effective than distributed engagement. Additionally, individual-AI pairs matched the performance of conventional teams, suggesting a reduced need for traditional team structures in some contexts. However, despite this capability, individual-AI pairs still fell short of the performance levels achieved by AI-assisted teams. These findings underscore that while generative AI can replace some traditional team functions, more comprehensively integrating AI within team structures provides superior benefits, enhancing overall effectiveness beyond individual efforts.

Submitted: May 28, 2024