Paper ID: 2405.17964
Transformer and Hybrid Deep Learning Based Models for Machine-Generated Text Detection
Teodor-George Marchitan, Claudiu Creanga, Liviu P. Dinu
This paper describes the approach of the UniBuc - NLP team in tackling the SemEval 2024 Task 8: Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection. We explored transformer-based and hybrid deep learning architectures. For subtask B, our transformer-based model achieved a strong \textbf{second-place} out of $77$ teams with an accuracy of \textbf{86.95\%}, demonstrating the architecture's suitability for this task. However, our models showed overfitting in subtask A which could potentially be fixed with less fine-tunning and increasing maximum sequence length. For subtask C (token-level classification), our hybrid model overfit during training, hindering its ability to detect transitions between human and machine-generated text.
Submitted: May 28, 2024