Paper ID: 2405.19179

Model Agnostic Defense against Adversarial Patch Attacks on Object Detection in Unmanned Aerial Vehicles

Saurabh Pathak, Samridha Shrestha, Abdelrahman AlMahmoud

Object detection forms a key component in Unmanned Aerial Vehicles (UAVs) for completing high-level tasks that depend on the awareness of objects on the ground from an aerial perspective. In that scenario, adversarial patch attacks on an onboard object detector can severely impair the performance of upstream tasks. This paper proposes a novel model-agnostic defense mechanism against the threat of adversarial patch attacks in the context of UAV-based object detection. We formulate adversarial patch defense as an occlusion removal task. The proposed defense method can neutralize adversarial patches located on objects of interest, without exposure to adversarial patches during training. Our lightweight single-stage defense approach allows us to maintain a model-agnostic nature, that once deployed does not require to be updated in response to changes in the object detection pipeline. The evaluations in digital and physical domains show the feasibility of our method for deployment in UAV object detection pipelines, by significantly decreasing the Attack Success Ratio without incurring significant processing costs. As a result, the proposed defense solution can improve the reliability of object detection for UAVs.

Submitted: May 29, 2024