Paper ID: 2405.19778
Enhancing Consistency and Role-Specific Knowledge Capturing by Rebuilding Fictional Character's Persona
Jeiyoon Park, Chanjun Park, Heuiseok Lim
With the recent introduction of Assistants API, it is expected that document-based language models will be actively used in various domains, especially Role-playing. However, a key challenge lies in utilizing protagonist's persona: Assistants API often fails to achieve with its search because the information extraction part is different each time and it often omits important information such as protagonist's backstory or relationships. It is hard to maintain a consistent persona simply by using the persona document as input to the Assistants API. To address the challenge of achieving stable persona consistency, we propose CharacterGPT, a novel persona reconstruction framework to alleviate the shortcomings of the Assistants API. Our method involves Character Persona Training (CPT), an effective persona rebuilding process that updates the character persona by extracting the character's traits from given summary of the novel for each character as if the story in a novel progresses. In our experiments, we ask each character to take the Big Five Inventory personality test in various settings and analyze the results. To assess whether it can think outside the box, we let each character generate short novels. Extensive experiments and human evaluation demonstrate that CharacterGPT presents new possibilities for role-playing agent research. Code and results are available at: https://github.com/Jeiyoon/charactergpt
Submitted: May 30, 2024