Paper ID: 2405.19784

PixelsDB: Serverless and Natural-Language-Aided Data Analytics with Flexible Service Levels and Prices

Haoqiong Bian, Dongyang Geng, Haoyang Li, Anastasia Ailamaki

Serverless query processing has become increasingly popular due to its advantages, including automated hardware and software management, high elasticity, and pay-as-you-go pricing. For users who are not system experts, serverless query processing greatly reduces the cost of owning a data analytic system. However, it is still a significant challenge for non-expert users to transform their complex and evolving data analytic needs into proper SQL queries and select a serverless query engine that delivers satisfactory performance and price for each type of query. This paper presents PixelsDB, an open-source data analytic system that allows users who lack system or SQL expertise to explore data efficiently. It allows users to generate and debug SQL queries using a natural language interface powered by fine-tuned language models. The queries are then executed by a serverless query engine that offers varying prices for different service levels on query urgency. The service levels are natively supported by dedicated architecture design and heterogeneous resource scheduling that can apply cost-efficient resources to process non-urgent queries. We envision that the combination of a serverless paradigm, a natural-language-aided interface, and flexible service levels and prices will substantially improve the user experience in data analysis.

Submitted: May 30, 2024