Paper ID: 2405.19971

GasTrace: Detecting Sandwich Attack Malicious Accounts in Ethereum

Zekai Liu, Xiaoqi Li, Hongli Peng, Wenkai Li

The openness and transparency of Ethereum transaction data make it easy to be exploited by any entities, executing malicious attacks. The sandwich attack manipulates the Automated Market Maker (AMM) mechanism, profiting from manipulating the market price through front or after-running transactions. To identify and prevent sandwich attacks, we propose a cascade classification framework GasTrace. GasTrace analyzes various transaction features to detect malicious accounts, notably through the analysis and modeling of Gas features. In the initial classification, we utilize the Support Vector Machine (SVM) with the Radial Basis Function (RBF) kernel to generate the predicted probabilities of accounts, further constructing a detailed transaction network. Subsequently, the behavior features are captured by the Graph Attention Network (GAT) technique in the second classification. Through cascade classification, GasTrace can analyze and classify the sandwich attacks. Our experimental results demonstrate that GasTrace achieves a remarkable detection and generation capability, performing an accuracy of 96.73% and an F1 score of 95.71% for identifying sandwich attack accounts.

Submitted: May 30, 2024