Paper ID: 2405.19982
A Deep Reinforcement Learning Approach for Trading Optimization in the Forex Market with Multi-Agent Asynchronous Distribution
Davoud Sarani, Dr. Parviz Rashidi-Khazaee
In today's forex market traders increasingly turn to algorithmic trading, leveraging computers to seek more profits. Deep learning techniques as cutting-edge advancements in machine learning, capable of identifying patterns in financial data. Traders utilize these patterns to execute more effective trades, adhering to algorithmic trading rules. Deep reinforcement learning methods (DRL), by directly executing trades based on identified patterns and assessing their profitability, offer advantages over traditional DL approaches. This research pioneers the application of a multi-agent (MA) RL framework with the state-of-the-art Asynchronous Advantage Actor-Critic (A3C) algorithm. The proposed method employs parallel learning across multiple asynchronous workers, each specialized in trading across multiple currency pairs to explore the potential for nuanced strategies tailored to different market conditions and currency pairs. Two different A3C with lock and without lock MA model was proposed and trained on single currency and multi-currency. The results indicate that both model outperform on Proximal Policy Optimization model. A3C with lock outperforms other in single currency training scenario and A3C without Lock outperforms other in multi-currency scenario. The findings demonstrate that this approach facilitates broader and faster exploration of different currency pairs, significantly enhancing trading returns. Additionally, the agent can learn a more profitable trading strategy in a shorter time.
Submitted: May 30, 2024