Paper ID: 2405.20516
WaveCastNet: An AI-enabled Wavefield Forecasting Framework for Earthquake Early Warning
Dongwei Lyu, Rie Nakata, Pu Ren, Michael W. Mahoney, Arben Pitarka, Nori Nakata, N. Benjamin Erichson
Large earthquakes can be destructive and quickly wreak havoc on a landscape. To mitigate immediate threats, early warning systems have been developed to alert residents, emergency responders, and critical infrastructure operators seconds to a minute before seismic waves arrive. These warnings provide time to take precautions and prevent damage. The success of these systems relies on fast, accurate predictions of ground motion intensities, which is challenging due to the complex physics of earthquakes, wave propagation, and their intricate spatial and temporal interactions. To improve early warning, we propose a novel AI-enabled framework, WaveCastNet, for forecasting ground motions from large earthquakes. WaveCastNet integrates a novel convolutional Long Expressive Memory (ConvLEM) model into a sequence to sequence (seq2seq) forecasting framework to model long-term dependencies and multi-scale patterns in both space and time. WaveCastNet, which shares weights across spatial and temporal dimensions, requires fewer parameters compared to more resource-intensive models like transformers and thus, in turn, reduces inference times. Importantly, WaveCastNet also generalizes better than transformer-based models to different seismic scenarios, including to more rare and critical situations with higher magnitude earthquakes. Our results using simulated data from the San Francisco Bay Area demonstrate the capability to rapidly predict the intensity and timing of destructive ground motions. Importantly, our proposed approach does not require estimating earthquake magnitudes and epicenters, which are prone to errors using conventional approaches; nor does it require empirical ground motion models, which fail to capture strongly heterogeneous wave propagation effects.
Submitted: May 30, 2024