Paper ID: 2405.20633

Skeleton-OOD: An End-to-End Skeleton-Based Model for Robust Out-of-Distribution Human Action Detection

Jing Xu, Anqi Zhu, Jingyu Lin, Qiuhong Ke, Cunjian Chen

Human action recognition is crucial in computer vision systems. However, in real-world scenarios, human actions often fall outside the distribution of training data, requiring a model to both recognize in-distribution (ID) actions and reject out-of-distribution (OOD) ones. Despite its importance, there has been limited research on OOD detection in human actions. Existing works on OOD detection mainly focus on image data with RGB structure, and many methods are post-hoc in nature. While these methods are convenient and computationally efficient, they often lack sufficient accuracy, fail to consider the exposure of OOD samples, and ignore the application in skeleton structure data. To address these challenges, we propose a novel end-to-end skeleton-based model called Skeleton-OOD, which is committed to improving the effectiveness of OOD tasks while ensuring the accuracy of ID recognition. Through extensive experiments conducted on NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-400 datasets, Skeleton-OOD demonstrates the superior performance of our proposed approach compared to state-of-the-art methods. Our findings underscore the effectiveness of classic OOD detection techniques in the context of skeleton-based action recognition tasks, offering promising avenues for future research in this field. Code is available at this https URL.

Submitted: May 31, 2024