Paper ID: 2406.00028
Persian Homograph Disambiguation: Leveraging ParsBERT for Enhanced Sentence Understanding with a Novel Word Disambiguation Dataset
Seyed Moein Ayyoubzadeh, Kourosh Shahnazari
Homograph disambiguation, the task of distinguishing words with identical spellings but different meanings, poses a substantial challenge in natural language processing. In this study, we introduce a novel dataset tailored for Persian homograph disambiguation. Our work encompasses a thorough exploration of various embeddings, evaluated through the cosine similarity method and their efficacy in downstream tasks like classification. Our investigation entails training a diverse array of lightweight machine learning and deep learning models for phonograph disambiguation. We scrutinize the models' performance in terms of Accuracy, Recall, and F1 Score, thereby gaining insights into their respective strengths and limitations. The outcomes of our research underscore three key contributions. First, we present a newly curated Persian dataset, providing a solid foundation for future research in homograph disambiguation. Second, our comparative analysis of embeddings highlights their utility in different contexts, enriching the understanding of their capabilities. Third, by training and evaluating a spectrum of models, we extend valuable guidance for practitioners in selecting suitable strategies for homograph disambiguation tasks. In summary, our study unveils a new dataset, scrutinizes embeddings through diverse perspectives, and benchmarks various models for homograph disambiguation. These findings empower researchers and practitioners to navigate the intricate landscape of homograph-related challenges effectively.
Submitted: May 24, 2024