Paper ID: 2406.00053

Dual Process Learning: Controlling Use of In-Context vs. In-Weights Strategies with Weight Forgetting

Suraj Anand, Michael A. Lepori, Jack Merullo, Ellie Pavlick

Language models have the ability to perform in-context learning (ICL), allowing them to flexibly adapt their behavior based on context. This contrasts with in-weights learning, where information is statically encoded in model parameters from iterated observations of the data. Despite this apparent ability to learn in-context, language models are known to struggle when faced with unseen or rarely seen tokens. Hence, we study $\textbf{structural in-context learning}$, which we define as the ability of a model to execute in-context learning on arbitrary tokens -- so called because the model must generalize on the basis of e.g. sentence structure or task structure, rather than semantic content encoded in token embeddings. An ideal model would be able to do both: flexibly deploy in-weights operations (in order to robustly accommodate ambiguous or unknown contexts using encoded semantic information) and structural in-context operations (in order to accommodate novel tokens). We study structural in-context algorithms in a simple part-of-speech setting using both practical and toy models. We find that active forgetting, a technique that was recently introduced to help models generalize to new languages, forces models to adopt structural in-context learning solutions. Finally, we introduce $\textbf{temporary forgetting}$, a straightforward extension of active forgetting that enables one to control how much a model relies on in-weights vs. in-context solutions. Importantly, temporary forgetting allows us to induce a $\textit{dual process strategy}$ where in-context and in-weights solutions coexist within a single model.

Submitted: May 28, 2024