Paper ID: 2406.00226
Entangled Relations: Leveraging NLI and Meta-analysis to Enhance Biomedical Relation Extraction
William Hogan, Jingbo Shang
Recent research efforts have explored the potential of leveraging natural language inference (NLI) techniques to enhance relation extraction (RE). In this vein, we introduce MetaEntail-RE, a novel adaptation method that harnesses NLI principles to enhance RE performance. Our approach follows past works by verbalizing relation classes into class-indicative hypotheses, aligning a traditionally multi-class classification task to one of textual entailment. We introduce three key enhancements: (1) Instead of labeling non-entailed premise-hypothesis pairs with the uninformative "neutral" entailment label, we introduce meta-class analysis, which provides additional context by analyzing overarching meta relationships between classes when assigning entailment labels; (2) Feasible hypothesis filtering, which removes unlikely hypotheses from consideration based on pairs of entity types; and (3) Group-based prediction selection, which further improves performance by selecting highly confident predictions. MetaEntail-RE is conceptually simple and empirically powerful, yielding significant improvements over conventional relation extraction techniques and other NLI formulations. Our experimental results underscore the versatility of MetaEntail-RE, demonstrating performance gains across both biomedical and general domains.
Submitted: May 31, 2024