Paper ID: 2406.00524
Adaptive boosting with dynamic weight adjustment
Vamsi Sai Ranga Sri Harsha Mangina
Adaptive Boosting with Dynamic Weight Adjustment is an enhancement of the traditional Adaptive boosting commonly known as AdaBoost, a powerful ensemble learning technique. Adaptive Boosting with Dynamic Weight Adjustment technique improves the efficiency and accuracy by dynamically updating the weights of the instances based on prediction error where the weights are updated in proportion to the error rather than updating weights uniformly as we do in traditional Adaboost. Adaptive Boosting with Dynamic Weight Adjustment performs better than Adaptive Boosting as it can handle more complex data relations, allowing our model to handle imbalances and noise better, leading to more accurate and balanced predictions. The proposed model provides a more flexible and effective approach for boosting, particularly in challenging classification tasks.
Submitted: Jun 1, 2024