Paper ID: 2406.01601

Backpropagation-Free Multi-modal On-Device Model Adaptation via Cloud-Device Collaboration

Wei Ji, Li Li, Zheqi Lv, Wenqiao Zhang, Mengze Li, Zhen Wan, Wenqiang Lei, Roger Zimmermann

In our increasingly interconnected world, where intelligent devices continually amass copious personalized multi-modal data, a pressing need arises to deliver high-quality, personalized device-aware services. However, this endeavor presents a multifaceted challenge to prevailing artificial intelligence (AI) systems primarily rooted in the cloud. As these systems grapple with shifting data distributions between the cloud and devices, the traditional approach of fine-tuning-based adaptation (FTA) exists the following issues: the costly and time-consuming data annotation required by FTA and the looming risk of model overfitting. To surmount these challenges, we introduce a Universal On-Device Multi-modal Model Adaptation Framework, revolutionizing on-device model adaptation by striking a balance between efficiency and effectiveness. The framework features the Fast Domain Adaptor (FDA) hosted in the cloud, providing tailored parameters for the Lightweight Multi-modal Model on devices. To enhance adaptability across multi-modal tasks, the AnchorFrame Distribution Reasoner (ADR) minimizes communication costs. Our contributions, encapsulated in the Cloud-Device Collaboration Multi-modal Parameter Generation (CDC-MMPG) framework, represent a pioneering solution for on-Device Multi-modal Model Adaptation (DMMA). Extensive experiments validate the efficiency and effectiveness of our method, particularly in video question answering and retrieval tasks, driving forward the integration of intelligent devices into our daily lives.

Submitted: May 21, 2024