Paper ID: 2406.02927

Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs

Mehdi Jabbari Zideh, Sarika Khushalani Solanki

Despite the relentless progress of deep learning models in analyzing the system conditions under cyber-physical events, their abilities are limited in the power system domain due to data availability issues, cost of data acquisition, and lack of interpretation and extrapolation for the data beyond the training windows. In addition, the integration of distributed energy resources (DERs) such as wind and solar generations increases the complexities and nonlinear nature of power systems. Therefore, an interpretable and reliable methodology is of utmost need to increase the confidence of power system operators and their situational awareness for making reliable decisions. This has led to the development of physics-informed neural network (PINN) models as more interpretable, trustworthy, and robust models where the underlying principled laws are integrated into the training process of neural network models to achieve improved performance. This paper proposes a multivariate physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs. The physical laws are integrated through a customized loss function that embeds the underlying Kirchhoff's circuit laws into the training process of the autoencoder. The performance of the multivariate PIConvAE model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA. The results show the exceptional performance of the proposed method in detecting various cyber anomalies in both systems. In addition, the model's effectiveness is evaluated in data scarcity scenarios with different training data ratios. Finally, the model's performance is compared with existing machine learning models where the PIConvAE model surpasses other models with considerably higher detection metrics.

Submitted: Jun 5, 2024